

#### 2020 YEAR 12 ASSESSMENT TASK 3

# **Mathematics Advanced**

#### **General Instructions**

- Working time 3 hours
- Reading time 10 minutes
- Write on the lined paper in the booklet provided
- Write Multiple Choice responses on sheet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

• Use the Reference Sheet

Class Teacher: Please shade the circle.

- O Mr Berry
- O Mr Hwang
- O Mr Ireland
- O Ms Lee
- O Mr Umakanthan

| STUDENT NUMBER. | 4 |
|-----------------|---|
| SIUDENI NUMBER. | T |

(To be used by the exam markers only.)

| Questions | 1-10          | 11-17         | 18-21         | 22-25         | 26-29         | 30-34         | 35-38         | Total |
|-----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-------|
| Mark      | <del>10</del> | <del>15</del> | <del>16</del> | <del>15</del> | <del>15</del> | <del>15</del> | <del>14</del> | 100   |

## Section I

Use the multiple-choice answer sheet for Questions 1-10

**1.** The period of  $f(x) = 4\cos(\frac{2\pi x}{3}) + 1$  is:

- A.  $\frac{2}{3}$ B.  $\frac{3}{2}$

- D. 5

**2**. If  $f(x) = \frac{x^2+1}{4-x^2}$  then the vertical and horizontal asymptotes are respectively:

- A. x = -2, x = 2,  $y = \frac{1}{4}$
- B. x = -2, x = 2, y = -1
- C. x = -2, x = 2, y = 1
- D. x = -2, x = 2, y = 0

**3**. The graph below shows the relation  $y^2 = x - 1$ . What type of relation is it?



- Α. one-to-one
- В. many-to-one
- C. many-to-many
- one-to-many D.

**4**. The 7<sup>th</sup> term of an arithmetic sequence is 45 and the 11<sup>th</sup> term is 77.

Find the first term (a) and the common difference (d).

A. 
$$a = -3$$
 and  $d = 8$ 

B. 
$$a = 3$$
 and  $d = 8$ 

C. 
$$a = 8 \text{ and } d = -3$$

D. 
$$a = 8$$
 and  $d = 3$ 

**5**. Part of the graph y = f(x) of the function f is shown:



f'(x) < 0 for

A. 
$$x \in (-3, -\frac{1}{2}) \cup (1, \infty)$$

B. 
$$x \in (-9, \frac{100}{27})$$

C. 
$$x \in (-2, \frac{1}{3})$$

D. 
$$x \in (-\infty, -2) \cup (\frac{1}{3}, \infty)$$

**6.** Find the derivative of  $e^{x \sin 3x}$ .

A. 
$$e^{3x\cos 3x}$$

$$B. \qquad e^{x \sin 3x} (\sin 3x + 3x \cos 3x)$$

C. 
$$e^{x \sin 3x}$$

$$D. \qquad e^{x \sin 3x} (\sin 3x - 3x \cos 3x)$$

**7.** The graph of a function f is obtained from the graph of the function g with rule  $g(x) = \sqrt{2x - 5}$  by a reflection in the x-axis, followed by a horizontal dilation from the y-axis by a factor of  $\frac{1}{2}$ . Which one of the following is the rule for the function f?

$$A. \quad f(x) = \sqrt{5 - 4x}$$

B. 
$$f(x) = -\sqrt{x-5}$$

C. 
$$f(x) = \sqrt{x+5}$$

D. 
$$f(x) = -\sqrt{4x - 5}$$

**8**. The discrete random variable *X* has this probability distribution:

| х      | 0 | 1   | 2   | 3   |
|--------|---|-----|-----|-----|
| P(X=x) | а | 3 a | 5 a | 7 a |

The mean of X is:

- A.  $\frac{1}{16}$
- B. 1
- C.  $\frac{35}{16}$
- D.  $\frac{17}{8}$

**9.** The difference in intensity of two sources of sound  $P_1$  and  $P_2$  is defined to be  $10 \log_{10}(\frac{P_1}{P_2})$  decibels. How much louder is a sound of  $112 \ dB$  than a sound of  $80 \ dB$ ?

- A. 32 times
- B. 1585 times
- C. 25 times
- D. 3.2 times

**10.** How many solutions does  $6\cos 2x = x$  for  $0 \le x \le 2\pi$  have ? (note: graph below shows  $y = \cos 2x$ )



- A. 1
- B. 2
- C. 3
- D 4

# **Section II: Short Answer**

#### Instructions

- Answer the questions in the spaces provided. Sufficient spaces are provided for typical responses.
- Your responses should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the back of the booklet.

  If you use this space, clearly indicate which question you are answering.

| Factorise $2x^2 + 5x + 2$ 1  Question 12 (2 marks)  Rationalise the denominator: $\frac{2}{3-\sqrt{2}}$ 2 |
|-----------------------------------------------------------------------------------------------------------|
| Question 12 (2 marks)  Rationalise the denominator: $\frac{2}{3-\sqrt{2}}$                                |
| Question 12 (2 marks)  Rationalise the denominator: $\frac{2}{3-\sqrt{2}}$                                |
| Question 12 (2 marks)  Rationalise the denominator: $\frac{2}{3-\sqrt{2}}$                                |
| Question 12 (2 marks)  Rationalise the denominator: $\frac{2}{3-\sqrt{2}}$                                |
| Question 12 (2 marks)  Rationalise the denominator: $\frac{2}{3-\sqrt{2}}$                                |
| Rationalise the denominator: $\frac{2}{3-\sqrt{2}}$                                                       |
| Rationalise the denominator: $\frac{2}{3-\sqrt{2}}$                                                       |
| Rationalise the denominator: $\frac{2}{3-\sqrt{2}}$                                                       |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
| Question 13 (3 marks)                                                                                     |
| Find the following integrals:                                                                             |
| (a) $\int \frac{1-2x^5}{x} dx$                                                                            |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |

| (b) $\int (3x+2)^4 dx$                            | 1 |
|---------------------------------------------------|---|
|                                                   |   |
|                                                   |   |
|                                                   |   |
|                                                   |   |
|                                                   |   |
| <b>Question 14</b> (3 marks)                      |   |
| Differentiate the following functions:            |   |
| (a) $y = 3^{5x+2}$                                | 1 |
|                                                   |   |
|                                                   |   |
|                                                   |   |
|                                                   |   |
| (b) $y = \frac{x}{\log_e x}$                      | 2 |
|                                                   |   |
|                                                   |   |
|                                                   |   |
|                                                   |   |
|                                                   |   |
| Question 15 (1 mark)                              |   |
| Write down the domain of $g(x) = \log_e(x + \pi)$ | 1 |
|                                                   |   |
|                                                   |   |
|                                                   |   |

| <b>Question 16</b> (3 marks)           |   |
|----------------------------------------|---|
| Solve $2\log_e x = \log_e(2x+3)$       | 3 |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
| Question 17 (2 marks)                  |   |
| Solve the inequality $x^2 \ge 3x + 18$ | 2 |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
| Question 18 (2 marks)                  |   |
| Find $\int_1^{e^3} \frac{5}{x} dx$     | 2 |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |

#### **Question 19** (4 marks)

Three towns, A, B and C form a triangle.

Town *A* is 80 km from Town *B* and Town *C* is 40 km from Town *A* as shown below:



The bearing of Town *B* from Town *A* is 130°. The bearing of Town *C* from Town *A* is 240°

(a) Use this information to find the size of ∠*CAB*, and hence find the area of the triangle formed by the three towns to the nearest square kilometre.

2

(b) Using the cosine rule, find the distance between Town *B* and Town *C*, to the nearest kilometre.

2

# Question 20 (3 marks)

(a) Given  $f(x) = \sqrt{4 - x^2}$  complete this table of values, correct to 3 decimal places.

| X    | 0 | 0.5 | 1 | 1.5 | 2 |
|------|---|-----|---|-----|---|
| f(x) |   |     |   |     |   |

1

| -  | 1. N  | II 41 T       |                | '. l. C     | sub-intervals   |            |                | - (  |
|----|-------|---------------|----------------|-------------|-----------------|------------|----------------|------|
| 1  | n١    | lice the Irai | กครกเสวเ หนเค  | with fair   | ciin_intervale  | to estima  | בווובעו בחל בל | 1 Ot |
| ١. | $\nu$ | USC the ITal  | DCZDIUAI I UIC | , with ioui | Sub litter vais | , to comma | ic the value   | , 01 |

| (b) Use the Trapezoidal rule, with four sub-intervals, to estimate the value of $\int\limits_0^2 \sqrt{4-x^2}dx.$ |  |
|-------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                   |  |
|                                                                                                                   |  |
|                                                                                                                   |  |
|                                                                                                                   |  |
|                                                                                                                   |  |
|                                                                                                                   |  |
|                                                                                                                   |  |
|                                                                                                                   |  |

# **Question 21** (7 marks)

For the curve:  $y = x^3 - 3x^2 - 9x + 4$ 

| (a) Find any stationary points and determine their nature. | 3 |
|------------------------------------------------------------|---|
|                                                            |   |
|                                                            |   |
|                                                            |   |
|                                                            |   |
|                                                            |   |
|                                                            |   |
|                                                            |   |
|                                                            |   |
|                                                            |   |
| (b) Find any points of inflexion.                          | 2 |
|                                                            |   |
|                                                            |   |
|                                                            |   |
|                                                            |   |
|                                                            |   |
|                                                            |   |
|                                                            |   |

| (c) Sketch the curve, sh | howing all main features. |
|--------------------------|---------------------------|
|--------------------------|---------------------------|

| Question 22 (2 marks)                                                                        |   |
|----------------------------------------------------------------------------------------------|---|
| Find the exact value of $\cot \theta$ given that $\cos \theta = 0.6$ and $\sin \theta < 0$ . | 2 |
|                                                                                              |   |
|                                                                                              |   |
|                                                                                              |   |
|                                                                                              |   |
|                                                                                              |   |
|                                                                                              |   |
|                                                                                              |   |
| One attion 22 (2 mail a)                                                                     |   |
| Question 23 (3 marks)                                                                        |   |
| A geometric progression has 5 <sup>th</sup> term 9 and 13 <sup>th</sup> term 59 049.         |   |
| (a) Find the first term and the common ratio.                                                | 2 |
|                                                                                              |   |
|                                                                                              |   |
|                                                                                              |   |
|                                                                                              |   |
|                                                                                              |   |
|                                                                                              |   |
|                                                                                              |   |
| (b) Find the 19 <sup>th</sup> term.                                                          | 1 |
| (b) This tile 17 term.                                                                       | _ |
|                                                                                              |   |
|                                                                                              |   |
|                                                                                              |   |

## Question 24 (5 marks)

The number of bacteria in a culture can be modelled by  $B=120\ 000\ e^{0.4\ t}$ where t is the time in hours after the experiment started. (a) How many bacteria are there after 6 hours have passed?

| (b) How fast was the culture growing after 6 hours?                  | 1 |
|----------------------------------------------------------------------|---|
|                                                                      |   |
|                                                                      |   |
|                                                                      |   |
|                                                                      |   |
| (c) What was the average rate of increase over the first 6 hours?    | 1 |
|                                                                      |   |
|                                                                      |   |
|                                                                      |   |
|                                                                      |   |
| (d) How long, in hours and minutes, will it take until the number of | 2 |
| bacteria doubles?                                                    | 2 |
|                                                                      |   |
|                                                                      |   |
|                                                                      |   |
|                                                                      |   |

## Question 25 (5 marks)

In an experiment, 2 balls are drawn at random and without replacement from an urn containing 4 red balls and 6 black balls. Let *X* be the number of red balls selected.

(a) Complete the table below:

| Outcome        | RR      | RB | BR | BB |  |
|----------------|---------|----|----|----|--|
| X              | 2       | 1  | 1  | 0  |  |
| p(X=x)         | 2<br>15 |    |    |    |  |
| x.p(x)         |         |    |    |    |  |
| X <sup>2</sup> |         |    |    |    |  |

| (b) What is the expected number of red balls drawn?      | 1 |
|----------------------------------------------------------|---|
| <br>                                                     |   |
|                                                          |   |
|                                                          |   |
|                                                          |   |
|                                                          |   |
| (c) What is the variance, $V(X)$ , of this distribution? | 2 |
|                                                          |   |
| <br>                                                     |   |
|                                                          |   |
|                                                          |   |
|                                                          |   |
|                                                          |   |

Question 26 (4 marks)



The diagram above shows the graphs of  $y = \sin x$  and  $y = \sqrt{3}\cos x$ ,  $0 \le x \le 2\pi$ . The second point of intersection is labelled B.

| (a) | Show, using any appropriate method, that $B$ has coordinates $(\frac{4\pi}{3}, \frac{-\sqrt{3}}{2})$ | 1 |
|-----|------------------------------------------------------------------------------------------------------|---|
|     |                                                                                                      |   |
|     |                                                                                                      |   |
| (b) | Find the exact area of the shaded region.                                                            | 3 |
|     |                                                                                                      |   |
|     |                                                                                                      |   |
|     |                                                                                                      |   |

| Question 27 (3 marks)                                                                         |   |
|-----------------------------------------------------------------------------------------------|---|
| $\boldsymbol{x}$                                                                              |   |
| $S_1$                                                                                         |   |
|                                                                                               |   |
| $I_1$ 7                                                                                       |   |
| 1 2 3 4 5 6 <i>t</i>                                                                          |   |
|                                                                                               |   |
| $I_2$                                                                                         |   |
| ${\mathcal S}_2$                                                                              |   |
| The graph shows the displacement of a particle, moving in a straight line, over the           |   |
| first 7 seconds of its motion. $S_1$ and $S_2$ are stationary points, and $I_1$ and $I_2$ are |   |
| inflection points.                                                                            |   |
| State the times, or periods of time, for which:                                               |   |
| (a) The particle is stationary.                                                               | 1 |
|                                                                                               |   |
| (b) The velocity is negative.                                                                 | 1 |
|                                                                                               |   |
| (c) The acceleration is positive.                                                             | 1 |

### Question 28 (4 marks)

Consider the graph of y = f(x) shown:



2

2

(a) Use the space below to sketch the graph of y = f'(x)

(b) Find the area bounded by y = f'(x) and the x-axis.

| Question | 29 | (4 marks) |
|----------|----|-----------|
| £        |    | (         |

For events A and B from a sample space,  $P(A|B) = \frac{3}{4}$  and  $P(B) = \frac{1}{3}$ 

|      | (a)    | Calculate $P(A \cap B)$                                                       | 1 |
|------|--------|-------------------------------------------------------------------------------|---|
|      |        |                                                                               |   |
| •••• |        |                                                                               |   |
|      |        |                                                                               |   |
|      |        |                                                                               |   |
|      |        |                                                                               |   |
|      |        |                                                                               |   |
|      | (b)    | Calculate $P(\bar{A} \cap B)$ where $\bar{A}$ denotes the complement of $A$ . | 1 |
| •••• |        |                                                                               |   |
| •••• |        |                                                                               |   |
| •••• |        |                                                                               |   |
|      |        |                                                                               |   |
|      |        |                                                                               |   |
|      |        |                                                                               |   |
|      | (c) If | A and B are independent, calculate $P(A \cup B)$                              | 2 |
|      |        |                                                                               |   |
|      |        |                                                                               |   |
|      |        |                                                                               |   |
| •••• |        |                                                                               |   |
| •••• |        |                                                                               |   |
| •••• |        |                                                                               |   |

| Question | 30 | (2 marks)    |
|----------|----|--------------|
| Z        |    | ( <b>—</b> ) |

| <b>Question 30</b> (2 marks)                                                     |   |
|----------------------------------------------------------------------------------|---|
| The gradient of a curve is given by $\frac{dy}{dx} = \frac{3x}{x^2 + e}$         |   |
| The curve passes through $(0, 2)$ . What is its equation?                        | 2 |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |
| <b>Question 31</b> (3 marks) If $f(x) = \sqrt{2-x}$ and $g(x) = \sqrt{x}$ , then |   |
| (a) Find the rule for the composite function $f \circ g$                         | 1 |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |
| (b) Find the domain of $f \circ g$                                               | 2 |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |
|                                                                                  |   |

# Question 32 (2 marks)

Given the graph of the function y = f(x) below, with turning points as shown, sketch the transformed function y = 3 f(x + 2) - 4. (x-intercepts not required).



# Question 33 (5 marks)

|        | (a) | Differentiate $y = \log_e(\cos x)$ with respect to $x$ .                                                                                                      | 1 |
|--------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|        |     |                                                                                                                                                               |   |
|        |     |                                                                                                                                                               |   |
|        | (b) | Sketch $y = \tan x$ for $0 \le x \le \frac{\pi}{2}$                                                                                                           | 1 |
|        |     |                                                                                                                                                               |   |
|        |     |                                                                                                                                                               |   |
|        |     |                                                                                                                                                               |   |
|        |     |                                                                                                                                                               |   |
|        | (c) | Hence, using parts (a) and (b), find the area bounded by $y = \tan x$ , the $x$ -axis, and the line $x = \frac{\pi}{3}$ (leave answer in simplest exact form) | 3 |
|        | (c) | the x-axis, and the line $x = \frac{\pi}{3}$                                                                                                                  | 3 |
|        |     | the x-axis, and the line $x = \frac{\pi}{3}$                                                                                                                  | 3 |
| •••••• |     | the <i>x</i> -axis, and the line $x = \frac{\pi}{3}$ (leave answer in simplest exact form)                                                                    | 3 |
| •••••• |     | the <i>x</i> -axis, and the line $x = \frac{\pi}{3}$ (leave answer in simplest exact form)                                                                    | 3 |
| •••••• |     | the <i>x</i> -axis, and the line $x = \frac{\pi}{3}$ (leave answer in simplest exact form)                                                                    | 3 |

#### Question 34 (3 marks)

The diagram shows y = f'(x), the graph of the derivative function of y = f(x).



(a) Explain why there is a horizontal point of inflection at x = -2 1

(b) Given that f(0) = 2, sketch a possible graph of y = f(x).

### **Question 35** (3 marks)

| Question of (6 marks)                                                                      |   |
|--------------------------------------------------------------------------------------------|---|
| Find the equation of the normal to $y = x \sin x$ at the point where $x = \frac{\pi}{2}$ . | 3 |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
| Question 36 (2 marks)                                                                      |   |
| (a) Sketch $y =  x  - 1$ and $y = 2x + 2$ neatly on the same number plane.                 | 1 |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
| (b) Hence solve the equation $ x  - 2x = 3$                                                | 1 |
| (b) Hence solve the equation $ \lambda  - 2\lambda = 3$                                    | 1 |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |
|                                                                                            |   |

#### **Question 37** (4 marks)

One half percent (0.5%) of a country has a certain viral disease. A test is developed for the disease. The test gives a false positive 3% of the time, and a false negative 2% of the time.

(a) Show that the probability that Andy, a randomly selected person, tests positive is  $0 \cdot 03475$ 2 [*Hint*: in this question, let D be the event that Andy has the disease, and  $\overline{D}$  be the event Andy does not have it. Let *T* be the event that Andy's test comes back positive.] ...... (b) Andy just got the bad news that his test came back positive. Find the probability that Andy actually has the disease. 2

#### Question 38 (5 marks)

The diagram below shows a sector of a circle of radius r centimetres. The angle at the centre is  $\theta$  radians, and the perimeter of the whole sector is 8 cm.



| Show that $r = \frac{8}{2+\theta}$ . | 1 |
|--------------------------------------|---|
|                                      |   |
|                                      |   |
|                                      |   |
|                                      |   |
|                                      |   |

1

(b) Show that A, the area of the sector in  $cm^2$ , is given by

$$A = \frac{32\theta}{(\theta+2)^2}$$

| (c)    | If $0 \le \theta \le \frac{1}{2}$ , find the maximum area of the sector, and the value of |   |
|--------|-------------------------------------------------------------------------------------------|---|
|        | heta for which this occurs.                                                               | 3 |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
|        |                                                                                           |   |
| •••••• |                                                                                           |   |
| •••••• |                                                                                           |   |
|        |                                                                                           |   |

End of examination

#### Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g "o"

STUDENT NUMBER: .....

Class (please ✓)

O - Mr Ireland

O - Mr Lin

O - Mr Berry

O - Dr Jomaa

O - Mrs Sarofim

○ - Mr Hwang

O - Miss Lee

○ - Ms Ziaziaris

O - Mr Uma

1 - (A) (B) (D)

2 - A C D

3 – (A) (B) (C)

4 - (B) (C) (D)

5 - (A) (B) (C) (

6 - (A) (C) (D)

7 - (A) (B) (C)

8 - (A) (B) (C)

9 - (A) (C) (D)

0 – (A) (B) (D

1) 
$$T = \frac{2\pi}{2\pi/3} = 3$$
 .: ©

(2) 
$$f(x) = \frac{x^2+1}{4-x^2}$$
 ::  $x \neq \pm 2$  :: (B)

(4) 
$$T_7 = a + 6d = 45$$
  
 $T_{11} = a + 10d = 77$   
 $\therefore 4d = 32, d = 8$   
 $\therefore a = -3$   $\therefore$  (A)

(5) 
$$f'(x)$$
 <0 means gradient is negative,  $\therefore x < -2$   $\therefore D$ 

6 
$$\frac{d}{dx}$$
 e  $= (\sin 3x \cdot 1 + x \cdot 3\cos 3x) \cdot e$ 

$$(7) \quad \sqrt{2x-5} \rightarrow -\sqrt{2x-5} \rightarrow -\sqrt{2(\frac{x}{2})-5}$$

$$= -\sqrt{4x-5} \quad \therefore \quad (D)$$

(8) 
$$\sum p=1$$
 :  $a+3a+5a+7a=1$   
:  $a=\frac{1}{16}$   
 $M = \sum x \cdot p(x) = 0 + 3a + 10a + 21a$   
=  $34a$   
=  $\frac{34}{11} = \frac{17}{8}$  : (D)

(9) 
$$112 dB - 80 dB = 32 dB$$
  

$$\therefore \log_{10}\left(\frac{P_1}{P_2}\right) = 3.2 \therefore \frac{P_1}{P_2} = 10$$

$$\therefore B$$

(10) 
$$6 \cos 2x = x$$

means  $\cos 2x = \frac{1}{6}x$ .

If we draw  $y = \frac{1}{6}x$ , then at  $x = 2\pi$ ,  $y = 1.047 > \cos 2(2\pi)$ 

: 3 intersections from x=0 to x=2TT



#### Section II: **Short Answer**

**Instructions** 

- Answer the questions in the spaces provided. Sufficient spaces are provided for typical responses.
- Your responses should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the back of the booklet. If you use this space, clearly indicate which question you are answering.

| Question 11 (1 mark)                                                                      |   |
|-------------------------------------------------------------------------------------------|---|
| Factorise $2x^2 + 5x + 2$ $\left(2x + 1\right)\left(x + 2\right)$                         | 1 |
|                                                                                           |   |
|                                                                                           |   |
|                                                                                           |   |
| Question 12 (2 marks)                                                                     |   |
|                                                                                           |   |
| Rationalise the denominator: $\frac{2}{3-\sqrt{2}}$                                       | 2 |
| $3-\sqrt{2}$                                                                              | 2 |
| $= \frac{2}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}$                             | 2 |
| 3 12                                                                                      | 2 |
| $= \frac{2}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}$ $= \frac{6+2\sqrt{2}}{9-2}$ | 2 |
| $= \frac{2}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}$ $= \frac{6+2\sqrt{2}}{9-2}$ | 2 |
| $= \frac{2}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}$ $= 6+2\sqrt{2}$             | 2 |
| $= \frac{2}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}$ $= \frac{6+2\sqrt{2}}{9-2}$ | 2 |





#### Question 16 (3 marks)

Solve  $2 \log_e x = \log_e (2x + 3)$ 

3



 $x^2 - 2x - 3 = 0$ 

$$(\alpha-3)(\alpha+1)=0$$

 $x = 3 \quad x = -1$ 

/

But I + - 1 as this can't be subbed into The equation

$$(x = 3)$$

# **Question 17** (2 marks)

Solve the inequality  $x^2 \ge 3x + 18$ 

2

 $x^2-3x-18 \ge 0$ 

 $(x-6)(x+3) \geq 0$ 





2

......

## Question 18 (2 marks)

Find  $\int_1^{e^3} \frac{5}{x} dx$ 

/

 $\int_{1}^{1} x^{dx} = \int_{1}^{2} \int_{1}^{e^{3}} \int_{1}^{e^{3}}$ 

 $= 5 \times 3 - 5 \times 6$ 



#### **Question 19** (4 marks)

Three towns, A, B and C form a triangle.

Town A is 80 km from Town B and Town C is 40 km from Town A as shown below:



The bearing of Town B from Town A is  $130^{\circ}$ . The bearing of Town C from Town A is  $240^{\circ}$ 

- 2

2

(a) Use this information to find the size of  $\angle CAB$ , and hence find the area of the

triangle formed by the three towns to the nearest square kilometre.

<CAB = 240° - 130° = 110°

Area DABC= ± . 40.80. Sin 110°

= 1503·508193···

 $= (1504 \text{ km}^2) (\text{nearest km}^2) \text{ } //$ 

(b) Using the cosine rule, find the distance between Town B and Town C, to the nearest kilometre.

 $Bc^2 = 40^2 + 80^2 - 2(40)(80) \cos 110^\circ$ 

÷ 10188, 9289 2...

.. BC = 100.940224 ... : BC = (101 km) (nearest km).

# Question 20 (3 marks)

(a) Given  $f(x) = \sqrt{4 - x^2}$  complete this table of values, correct to 3 decimal places.

| X    | 0 | 0.5   | 1     | 1.5   | 2 |
|------|---|-------|-------|-------|---|
| f(x) | 2 | 1.936 | 1.732 | 1.323 | 0 |

1

1

(b) Use the Trapezoidal rule, with four sub-intervals, to estimate the value of

| $\int_{0}^{2} \sqrt{4-x^2}  dx  .$ |                                                  | 2    |
|------------------------------------|--------------------------------------------------|------|
| <sup>0</sup> <sup>2</sup>          | h= width sub-interval = 0.5                      |      |
| $\int_{0}^{\sqrt{4-x^{2}}} dx = 0$ | h = width sub-interval = 0.5 $2 = 1.732 + 1.323$ | )] ~ |
| = (                                | 2.9955)                                          |      |
|                                    |                                                  |      |
|                                    |                                                  |      |
|                                    |                                                  |      |
|                                    |                                                  |      |
|                                    |                                                  |      |
|                                    |                                                  |      |
|                                    |                                                  |      |
|                                    |                                                  |      |

### Question 21 (7 marks)

For the curve:  $y = x^3 - 3x^2 - 9x + 4$ 

(a) Find any stationary points and determine their nature.

3

 $y' = 3x^{2} - 6x - 9$  y'' = 6x - 6=  $3(x^{2} - 2x - 3)$  y'' = 6(x - 1)

y' = 3(x-3)(x+1)

For stat. pts, y'=0: x=3 or x=-1 y=-23 y=9

At (3,-23), y'' = 6(3-1) = 12 > 0 -: local minimum

at (3,-23)

At (-1,9), y"=6(-1-1)=-12<0 : local maximum

(b) Find any points of inflexion.

2

For inflexions, y"=0 6(x-1)=0 : x=1, y=-7.

Test:  $x \mid 0 \mid 2$ 

change in concavity .: inflexion at of1, -7



### Question 22 (2 marks)

Find the exact value of  $\cot \theta$  given that  $\cos \theta = 0.6$  and  $\sin \theta < 0$ .

 $\cos \theta = 0.6 = \frac{3}{5}$ ;  $\cos \theta > 0.2 \sin \theta < 0.2$ . Q4

2

2

1



# Question 23 (3 marks)

A geometric progression has 5th term 9 and 13th term 59 049.

(a) Find the first term and the common ratio.





### Question 24 (5 marks)

The number of bacteria in a culture can be modelled by  $B = 120\ 000\ e^{0.4\ t}$  where t is the time in hours after the experiment started.

| (a) | How many | bacteria are tl | nere after 6 ho | ours have passed? |  |
|-----|----------|-----------------|-----------------|-------------------|--|
|     |          | e(014)6=        |                 | 2.4               |  |

1



1





/

| (c)      | What was the average rate of increase over the first 6 hours? |     |     |      |      |         |     |   |     |       |   |
|----------|---------------------------------------------------------------|-----|-----|------|------|---------|-----|---|-----|-------|---|
| - 4      |                                                               |     |     |      |      |         | 0   |   |     |       |   |
| Starting | num                                                           | ber | at  | t=0  | =    | 120 000 | o e | = | 120 | 000   | ٠ |
| •        |                                                               |     |     |      |      |         |     |   |     | ••••• | • |
| verage   | rate                                                          | =   | / 3 | 22 7 | 81 - | 120000  |     |   |     |       |   |

1

| 9 | 6                   |          |
|---|---------------------|----------|
|   |                     | ******** |
|   | = (200 463 perhour) | *****    |
|   |                     |          |

/

(d) How long, in hours and minutes, will it take until the number of bacteria doubles?

$$240000 = 120000 e$$

$$0.4t = 2$$

$$1.732.867... hour
= (1 hour 44 mins. (nearest min.))$$

### Question 25 (5 marks)

In an experiment, 2 balls are drawn at random and without replacement from an urn containing 4 red balls and 6 black balls. Let *X* be the number of red balls selected.

### (a) Complete the table below:

|   | _ |   |  |
|---|---|---|--|
| • |   | В |  |
|   |   |   |  |

| Outcome        | RR             | RB      | BR       | ВВ     |  |
|----------------|----------------|---------|----------|--------|--|
| X              | 2              | 1       | 1        | 0      |  |
| p(X=x)         | $\frac{2}{15}$ | 4.6 = 4 | 6. 4 = 4 | 6.5=13 |  |
| x.p(x)         | 4 15           | 15      | 4 15     | 40     |  |
| X <sup>2</sup> | 4              | 1       | 1 8      | 0      |  |



(b) What is the expected number of red balls drawn?

1





(c) What is the variance, V(X), of this distribution?











The diagram above shows the graphs of  $y = \sin x$  and  $y = \sqrt{3}\cos x$ ,  $0 \le x \le 2\pi$ . The second point of intersection is labelled *B*.

Show, using any appropriate method, that *B* has coordinates  $(\frac{4\pi}{3}, \frac{-\sqrt{3}}{2})$ (a)

B lies on Sin x and on \3 cos x. Here, sin #=-sin = - = : tanx = 13 and 13 cos \$ = 13. - 60\$ · x= \( \frac{4}{3} \). = 13 · - ½ = - 3 But  $x>4: x=\frac{4\pi}{3}$ 

: aires both go thru (4th, -13) : y = sin 4 = - 13

Find the exact area of the shaded region.

$$= \left| -\cos \frac{4\pi}{3} - \left( -\cos \pi \right) + \sqrt{3} \sin \frac{3\pi}{2} - \sqrt{3} \sin \frac{4\pi}{3} \right|$$

$$= \left| \frac{1}{2} + (-1) \right| + \left| -\sqrt{3} - \sqrt{3} \left( -\frac{12}{3} \right) \right|$$

$$= \left| \cos \sqrt{3} > \frac{3}{2} \right|$$

1



Question 27 (3 marks)



The graph shows the displacement of a particle, moving in a straight line, over the first 7 seconds of its motion.  $S_1$  and  $S_2$  are stationary points, and  $I_1$  and  $I_2$  are inflection points.

State the times, or periods of time, for which:



## Question 28 (4 marks)

Consider the graph of y = f(x) shown:



(a) Use the space below to sketch the graph of y = f'(x)



2

2

(b) Find the area bounded by y = f'(x) and the x-axis.



### Question 29 (4 marks)

For events A and B from a sample space,  $P(A|B) = \frac{3}{4}$  and  $P(B) = \frac{1}{3}$ 

| (a) | ) Cal | lculate | P(A | $\cap$ | B |
|-----|-------|---------|-----|--------|---|

 $P(A \cap B) = P(A|B) \cdot P(B)$   $= 34 \cdot \frac{1}{3}$ 

1

1

2



(b) Calculate  $P(\bar{A} \cap B)$  where  $\bar{A}$  denotes the complement of A.



 $\begin{bmatrix}
ALT : P(\overline{A} \cap B) = P(B) - P(A \cap B) \\
= \frac{1}{2} - \frac{1}{2} = \frac{1}{2}
\end{bmatrix}$ 

(c) If A and B are independent, calculate  $P(A \cup B)$ 





.....

### Question 30 (2 marks)

The gradient of a curve is given by  $\frac{dy}{dx} = \frac{3x}{x^2 + e}$ 

The curve passes through (0, 2). What is its equation?





At 
$$x=0, y=2$$
 :  $2=\frac{3}{2}\ln(o^2+e)+c$ 

$$2^{2} = \frac{3}{2} \ln e + C$$

$$= \frac{3}{2} \cdot 1 + C \quad \therefore C^{2} = \frac{1}{2}$$

$$\therefore \left(y = \frac{3}{2} \log \left(x^{2} + e\right) + \frac{1}{2}\right)$$

$$= \left(x^{2} + e\right) + \frac{1}{2}$$

Question 31 (3 marks)

If 
$$f(x) = \sqrt{2-x}$$
 and  $g(x) = \sqrt{x}$ , then









2

1

Given the graph of the function y = f(x) below, with turning points as shown, sketch the transformed function y = 3 f(x + 2) - 4. (x-intercepts not required).





$$x=-2$$
  
 $y=3/6)-4=14$ 

$$... (-2, 14)$$

(0,6) transforms to 
$$x=-2$$
 ... (-2,14)  
 $y=3(6)-4=14$   
(-4,-7) transforms to  $x=-6$   
 $y=3(-4)-4=-25$  ... (-6,-25).

$$x = -6$$
  
 $y = 3(-7) - 4 = -25$ 



(a) Differentiate  $y = \log_e(\cos x)$  with respect to x.

1





(c) Hence, using parts (a) and (b), find the area bounded by  $y = \tan x$ , the x-axis, and the line  $x = \frac{\pi}{3}$  (leave answer in simplest exact form)

3



#### Question 34 (3 marks)

The diagram shows y = f'(x), the graph of the derivative function of y = f(x).



Explain why there is a horizontal point of inflection at x = -2

At x=-2, f'(x)=0 : its a stationary point.

Also, f''(x) > 0 on left g(x) = -2, & f''(x) < 0 on right

.. change in concavity .. (horizontal) point of inflection

(ALT! f(x) is 0 at x=-2 but regative on both sides 1 -2)

ie. \_\_\_\_ inflection.

Given that f(0) = 2, sketch a possible graph of y = f(x). (b)



1

- horizinflexion
  at x = -2

  minimum
  turning pt at x=1

  y-int = 2

  Shape.

Question 35 (3 marks) Find the equation of the normal to  $y = x \sin x$  at the point where  $x = \frac{\pi}{2}$ . 3  $y = x \sin x$   $\therefore y' = \sin x \cdot 1 + x \cdot \cos x$ i.e.  $y' = \sin x + x \cos x$ At x= 7, y= 3.sin = = = and, y'= sin # + #, cos # = 1 .. M =-1 normal is  $y - \overline{y} = -1(x - \overline{y})$ ...  $y = -x + \pi$  (i.e.  $x+y-\pi=0$ ) **Question 36** (2 marks) (a) Sketch y = |x| - 1 and y = 2x + 2 neatly on the same number plane. 1 y = |x| -1



### Question 37 (4 marks)

One half percent (0.5%) of a country has a certain viral disease. A test is developed for the disease. The test gives a false positive 3% of the time, and a false negative 2% of the time.

(a) Show that the probability that Andy, a randomly selected person, tests positive is  $0 \cdot 03475$ 

2

[*Hint*: in this question, let D be the event that Andy has the disease, and  $\overline{D}$  be the event Andy does not have it. Let T be the event that Andy's test comes back positive.]

| Р(т) |       |   |      |  |   |   |
|------|-------|---|------|--|---|---|
|      | <br>C | 0 | <br> |  | / | / |

| <br>2 | (0.98) | (0.005) | ) + | (0.03) | (0.995 |
|-------|--------|---------|-----|--------|--------|
|       |        |         |     |        | 7      |

| <br>• • • • • • • • • • • • • • • • • • • • |         |
|---------------------------------------------|---------|
| =                                           | 0.03475 |
| <br>                                        |         |



|                     | <br>            | ************************ | ********************* | ********* |
|---------------------|-----------------|--------------------------|-----------------------|-----------|
|                     |                 |                          |                       |           |
| ********            | <br>*********** |                          |                       |           |
|                     |                 |                          |                       |           |
| ******************* | <br>            |                          |                       |           |

(b) Andy just got the bad news that his test came back positive.

Find the probability that Andy actually has the disease.
$$P(D|T) = P(D \cap T) = P(T \cap D)$$

$$P(T)$$

$$P(T) P(T)$$

$$= P(T|D) \cdot P(D)$$

$$P(T)$$



### Question 38 (5 marks)

The diagram below shows a sector of a circle of radius r centimetres. The angle at the centre is  $\theta$  radians, and the perimeter of the whole sector is 8 *cm*.



(a) Show that 
$$r = \frac{8}{2+\theta}$$
.

1

$$l=r\theta$$

$$r+r+r\theta=8$$

$$2r + r\theta = 8$$
 $r(2+\theta) = 8$ 
 $\therefore r = \frac{8}{2+\theta}$ 

as required.

Show that A, the area of the sector in  $cm^2$ , is given by (b)

$$A = \frac{32\theta}{(\theta+2)^2}$$

$$A = \frac{1}{2}r^{2}\theta = \frac{1}{2}\left(\frac{8}{2+\theta}\right)^{2}. \theta = \frac{1}{2} \cdot \frac{64\theta}{(2+\theta)^{2}}$$





| heta for which this occurs.                                                                                                         | 3         |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------|
| $\frac{dA}{d\theta} = (\theta+2)^2 \cdot 32 - (320) \cdot 2(\theta+2)$ $(\theta+2)^{4}$                                             | $\sqrt{}$ |
|                                                                                                                                     |           |
| For max-A, dA =0 : 32/0+2)2-640(0+2)=0                                                                                              |           |
| -: $32(0+2) \int 0+2-20 = 0$                                                                                                        |           |
|                                                                                                                                     |           |
| $\therefore 32(\theta+2)(2-\theta)=0$                                                                                               |           |
| $\therefore \theta = -2  \text{or}  \theta = 2$                                                                                     |           |
| But 0 = 0 = T/2, so these both lie outside he                                                                                       |           |
| possible range g 0.                                                                                                                 |           |
| So we need to test the endpoints, D and T/2:-                                                                                       |           |
| $At \Theta = 0$ , $A = 0$                                                                                                           |           |
|                                                                                                                                     |           |
| At $0 = \frac{7}{2}$ , $A = 32(\frac{7}{2}) = \frac{16\pi}{(77 + 4)2}$                                                              |           |
| $(\frac{\pi}{2} + 2)^2 \qquad (\frac{\pi + 4}{2})^2$                                                                                |           |
| A = 64 T                                                                                                                            |           |
| (17+4)2                                                                                                                             |           |
| (11+4)                                                                                                                              |           |
| = 3.9422 cm²                                                                                                                        |           |
|                                                                                                                                     |           |
| Thus max. area = $\frac{64\pi}{(\pi \pi + 4)^2}$ an $^2 \pm 3.9422$ cm <sup>2</sup> obtained when $\theta = \frac{\pi}{2}$ radians. | )         |
| obtained when $\Theta = \frac{\pi}{2}$ radians.                                                                                     | //        |
|                                                                                                                                     | \ / V     |

(c) If  $0 \le \theta \le \frac{\pi}{2}$ , find the maximum area of the sector, and the value of

End of examination